O registro transcutâneo de CO2 contribui para a subclassificação das apneias do sono

Palavras-chave: Hipercapnia, pressão transcutânea de CO2, apneia do sono, síndrome de obesidade-hipoventilação, fenótipos

Resumo

A hipercapnia resultante da apneia do sono é uma consequência fisiopatológica significativa que pode levar à disfunção cardíaca, circulatória, neurológica e renal. É um assunto de pesquisa recente, desde que a medição transcutânea de CO2 está disponível. Sua prevalência em pacientes com síndrome da apneia do sono e seus fatores preditivos não são totalmente conhecidos. Embora diferentes fenótipos de apneia do sono tenham sido descritos, o registro de PtCO2 não tem sido frequentemente usado para sua classificação. O objetivo deste estudo é apresentar o dados de 242 pacientes que consultaram por apneia do sono, que foram submetidos a polissonografia completa e pressão transcutânea de CO2. Aumento de CO2 durante o sono estava presente em 23.6% dos pacientes. O valor de PtCO2 ao acordar permitiu classificá-los em grupos com diferentes graus de gravidade e foi o mais importante preditor de aumento. Bicarbonato plasmático, tempo gasto em apneias e períodos de sono REM com dessaturação persistente de oxigênio foram eventos frequentemente associados. A inclusão da hipercapnia do sono entre as características para subclassificação da síndrome pode contribuir para um tratamento específico e personalizado.

Downloads

Não há dados estatísticos.

Referências

Gastaut H, Tassinari CA, Duron B. Polygraphic study of the episodic diurnal and nocturnal (Hypnic and respiratory) manifestations of the Pickwick syndrome. Brain Research. 1966;2:167-186.

Severinghaus, J. W. History, status and future of pulse oximetry. En: Continuous Transcutaneous Monitoring. Boston, MA: Springer US; 1987. pg. 3-8

Ryan S, Taylor CT, McNicholas WT. Selective activation of inflammatory pathways by intermittent hypoxia in obstructive sleep apnea syndrome. Circulation. 2005;112(17):2660-7.

Martinez-Garcia MA, Sánchez-de-la-Torre M, White DA and Azarbarzin A. Hypoxic Burden in Obstructive Sleep Apnea:Present and Future. Archivos de Bronconeumología. 2023;59(1):36-43.

Phelan DE, Mota C, Lai C,Kierans SJ, Cummins EP. Carbon dioxidedependent signal transduction in mammalian systems. Interface Focus. 2021;11:20200033

Stieglitz S, Matthes S, Priegnitz C, Hagmeyer L, Randerath W. Comparison of Transcutaneous and Capillary Measurement of PCO2 in Hypercapnic Subjects. Respir Care. 2016;61(1):98-105.

Berlowitz DJ, Spong J, O’Donoghue FJ, J Pierce RJ, Brown DJ, Campbell DA, Catcheside PG, Gordon I, Rochford PD. Transcutaneous Measurement of Carbon Dioxide Tension During Extended Monitoring: Evaluation of Accuracy and Stability, and an Algorithm for Correcting Calibration Drift. Respiratory Care. 2011;56(4):442-448.

Troester MM, Quan SF, Berry RB et al; for the American Asociation of Sleep Medicine. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications. Version 3. Darien, Il: American Asociation of Sleep Medicine; 2023.

Edwards B, Redline S, Sands S and Owens R. More Than the Sum of the Respiratory Events: Personalized Medicine. Am J Respir Crit Care Med. 2019;200:691–703.

Chhajed PN, Heuss LT, Tamm M. Cutaneous carbon dioxide monitoring in adults. Curr Opin Anaesthesiol. 2004;17(6):521-5.

Cerveri MC, Zoia F, Fanfulla L, et al.: Reference values of arterial oxygen tension in the middle-aged and elderly. Am. J. Respir. Crit. Care Med. 1995;152:934-941,

Arcos JP, Lorenzo D, Musetti A, Gutiérrez M, Buño M y Baz M. Síndrome de Apneas del Sueño: revisión de 25años de experiencia. An Facultad Med (Univ Repúb Urug). 2017;4(2):45-63.

Verdaguer M, Levrat V, Lamour C, Paquereau J, Neau JP, Meurice JC. Pathologie pulmonaire au féminin: ¿le SAOS de la femme, une entité particulière? Revue des maladies respiratoires. 2008;25(10):1279-1288.

Benjafield AV, Ayas NT, Eastwood PR, Heinzer R, Ip MSM, Morrell MJ, et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. Lancet Respir Med. 2019;7(8):687-698.

Kaw R, Hernandez AV, Walker E, Aboussouan L, Mokhlesi B. Determinants of hypercapnia in obese patients with obstructive sleep apnea: a systematic review and metaanalysis of cohort studies. Chest. 2009;136(3):787-796.

Hughes JMB. Pulmonary gas exchange. En: Lung Function Tests. Physiological principles and Clinical Applications. Eds: Hughes JMB and Pride NB. London: W.B. Saunders; 1999. Pg. 75 -92.

Zheng Y, Yee BJ, Wong K, Grunstein RR, Piper AJ. A comparison of two obesity-related hypoventilation disorders: Impact on sleep, quality of life and neurocognitive outcomes and the effects of positive airway pressure therapy. Sleep Adv. 2024;5(1):1-8.

Viswanath V, Chitalia R, Pantel AR, Karp JS, Mankoff DA. Analysis of 4D data for total-body PET imaging. PET clinics. 2021;16(1):55.

Hang LW, Liang SJ, Finnsson E, Ágústsson JS, Sands SA, Cheng WJ. Endotypic Traits Characterizing Obesity and Sleep-related Hypoventilation in Patients with Obstructive Sleep Apnea. Ann Am Thorac Soc. 2024;3.

Masa JF, Pepin JL, Borel JC, Mokhlesi B, Murphy PB, Sanchez-Quiroga MA. Obesity hypoventilation syndrome. Eur Respir Rev. 2019;28(151):180097

Eckert DJ. Respiratory Physiology: Understanding the Control of Ventilation. In: Principles and Practice of Sleep Medicine 7h edition. Eds: Kryger M, Roth Th. Philadelphia: Elsevier; 2022. Pg. 245-251.

Randerath W, Verbraecken J, Andreas S, Arzt M, Bloch KE, Brack T, et al. Definition, discrimination, diagnosis and treatment of central breathing disturbances during sleep. European Respiratory Journal. 2017;49(1):1600959.

Randerath W. More Than Obstruction: Rethinking Obesity Hypoventilation? Ann Am Thorac Soc. 2020;17(3):282-283.

Goyal A, Pakhare A, Tiwari IR, Khurana A, Chaudhary P. Diagnosing obstructive sleep apnea patients with isolated nocturnal hypoventilation and defining obesity hypoventilation syndrome using new European Respiratory Society classification criteria: an Indian perspective. Sleep Medicine. 2020;66:85-91.

Sivam S, Yee B, Wong K, Wang D, Grunstein R, Piper A. Obesity hypoventilation syndrome: early detection of nocturnal-only hypercapnia in an obese population. Journal of Clinical Sleep Medicine. 2018;14(9):1477-1484.

Hess MW. Oxygen therapy in COPD. Respiratory Care. 2023;68(7):998-1012.

Malhotra A, Ayappa I, Ayas N, Collop N, et al. Metrics of sleep apnea severity: beyond the apnea-hypopnea index. Sleep J. 2021;44(7):zsab030.

Skolnik C, Attarian H. The ethics of hypopnea scoring. J Clin Sleep Med. 2024;20(4):615–617.

West JB. Assessing Pulmonary Gas Exchange. New England Journal of Medicine. 1987;316(21):1336–1338.

Randerath W. Measurement of hypercapnia: therapy and practical interpretation. ERS/ESRS Sleep and Breathing conference. Amberes, 2025. Pg. 10-12.

Pépin JL. Management of OHS: what PCO2 to target? ERS/ESRS Sleep and Breathing conference. Amberes, 2025. Pg: 10-12

Mokhlesi B, Masa JF, Brozek JL, Gurubhagavatula I, Murphy PB, Piper AJ et al. Evaluation and management of obesity hypoventilation syndrome. An official American Thoracic Society clinical practice guideline. Am J Respir Crit Care Med. 2019;200(3): e6–e24.

Anderer P, Ross M, Cerny A, Shaw E. Automated Scoring of Sleep and Associated Events. Adv Exp Med Biol. 2022;1384:107-130.

Veatch OJ, Bauer CR, Keenan BT, Josyula NS, Mazzotti DR, Bagai K, et al. Characterization of genetic and phenotypic heterogeneity of obstructive sleep apnea using electronic health records. BMC medical genomics. 2020;13:1-14.

Finnsson E, Ólafsdóttir GH, Loftsdóttir DL, Jónsson SÆ, Helgadóttir H, Ágústsson JS, et al. A scalable method of determining physiological endotypes of sleep apnea from a polysomnographic sleep study. Sleep. 2021;44(1):zsaa168.

Eckert DJ, White DP, Jordan AS, Malhotra A, Wellman A. Defining phenotypic causes of obstructive sleep apnea. Identification of novel therapeutic targets. Am J Respir Crit Care Med. 2013;188(8):996–1004.

Crinion SJ, Ryan S, McNicholas WT. Obstructive sleep apnoea as a cause of nocturnal nondipping blood pressure: recent evidence regarding clinical importance and underlying mechanisms. Eur Respir J. 2017;49(1):1601818.

Mazzotti D, Keenan B, Lim, D, Gottlieb D, et al. Symptom Subtypes of Obstructive Sleep Apnea Predict Incidence of Cardiovascular Outcomes. Am J Respir Crit Care Med. 2019; 4:493–506.

Zinchuk AV, Gentry MJ, Concato J, Yaggi HK. Phenotypes in obstructive sleep apnea: a definition, examples and evolution of approaches. Sleep medicine reviews. 2017; 35:113-123.

Ye L, Pien GW, Ratcliffe SJ, Björnsdottir E, Arnardottir ES, Pack AI, Benediktsdottir B, Gislason T. The different clinical faces of obstructive sleep apnoea: a cluster analysis. Eur Respir J. 2014;44(6):1600-7.

Bailly S, Grote L, Hedner J, Schiza S, McNicholas WT, Basoglu OK, et al. Clusters of sleep apnoea phenotypes: a large pan‐European study from the European Sleep Apnoea Database (ESADA). Respirology. 2021;26(4):378-387.

Beaudin AE, Raneri JK, Ayas NT, Skomro RP, Smith EE, Hanly PJ, Canadian Sleep and Circadian Network. Contribution of hypercapnia to cognitive impairment in severe sleep-disordered breathing. Journal of Clinical Sleep Medicine. 2022;18(1):245-254.

Publicado
2025-09-03
Como Citar
Ksiazenicki, M., Musetti, A., Artola, F., Escuder, F., Chiappella, L., González, G., Arcos, J. P., Santa Marina, G., Morales, L., & Frattini, R. (2025). O registro transcutâneo de CO2 contribui para a subclassificação das apneias do sono. Anales De La Facultad De Medicina, 12(2), e203. https://doi.org/10.25184/anfamed2025v12n2a6
Seção
Artículos originales