Mecánica y energética durante la marcha en cinta caminadora en adultos uruguayos saludables:
efecto del IMC y la edad.
Resumen
La evaluación de la marcha en cinta caminadora puede resultar relevante para la toma de decisiones clínicas. No obstante, factores demográficos como la edad y el IMC pueden alterar la interpretación de los resultados. Nuestro objetivo fue obtener variables espacio- temporales, energéticas y costo de transporte durante la velocidad autoseleccionada en cinta caminadora para una muestra representativa de adultos uruguayos (n=28) y evaluar si diferentes rangos de edades e IMC pueden ser factores a tener en cuenta en pruebas clínicas donde se consideren dichas variables. Participaron 17 hombres y 11 mujeres (39,3 ± 14,8 años, 75,9 ± 12,5 kg, 1,74 ± 0,09 m, IMC 25,2 ± 4,06). Se realizó una reconstrucción 3D del movimiento en forma sincronizada con el consumo energético. Se obtuvieron valores de referencia y luego de agrupar los participantes según su IMC y rango de edad se compararon los datos mediante test de t (p≤0.05). Los resultados revelaron discrepancias significativas en las medidas espacio-temporales y energéticas de los adultos uruguayos al caminar en cinta con respecto a la literatura. La marcha difiere entre adultos jóvenes y de mediana edad en su velocidad autoseleccionada (p=0,03), longitud de zancada (p=0,01), trabajo mecánico externo (<0,001) y recuperación de energía mecánica (0,009), destacando la importancia de considerar la edad en evaluaciones clínicas. El IMC no influyó significativamente en estas variables. Estos hallazgos subrayan la necesidad de ajustar las interpretaciones de las pruebas clínicas de la marcha sobre cinta caminadora en adultos uruguayos de mediana edad (45 a 65 años).
Descargas
Citas
Perry J. Análise de Marcha. San Pablo: Prima Producción Editorial; 2005.
Willems PA, Schepens B, Detrembleur C. Marcha normal. EMCKinesiterapia-Med Física. 2012;33(2):1–29.
Baker R. Gait analysis methods in rehabilitation. J Neuroeng Rehabil. 2006;3-4.
Fábrica CG, Peña I, Silva V, Ramos V. Aprovechamiento de energía, cinemática y estabilidad en la marcha de un amputado transfemoral sin abordaje de rehabilitación. Rev Fac Med Univ Nac Colomb. 2018;66(1):59–68.
Fábrica G, Jerez-Mayorga D, Silva-Pereyra V. Pendular energy transduction in the different phases of gait cycle in post-stroke subjects. Hum Mov Sci. 2019;66:521–528.
Saibene F, Minetti AE. Biomechanical and physiological aspects of legged locomotion in humans. Eur J Appl Physiol. 2003;88:297–316.
Peyré-Tartaruga LA, Dewolf AH, di Prampero PE, et al. Mechanical work as a (key) determinant of energy cost in human locomotion: recent findings and future directions. Exp Physiol. 2021;1–12.
Detrembleur C, Dierick F, Stoquart G, Chantraine F, Lejeune T. Energy cost, mechanical work, and efficiency of hemiparetic walking. Gait Posture. 2003;18:47–55.
Detrembleur C, Vanmarsenille JM, De Cuyper F, Dierick F. Relationship between energy cost, gait speed, vertical displacement of centre of body mass and efficiency of pendulum-like mechanism in unilateral amputee gait. Gait
Posture. 2005;21:333–340.
Farris DJ, Hampton A, Lewek MD, Sawicki GS. Revisiting the mechanics and energetics of walking in individuals with chronic hemiparesis following stroke: From individual limbs to lower limb joints. J Neuroeng Rehabil. 2015;12:12–24.
Bona RL, Gomeñuka NA, Storniolo JLL, Bonezi A, Biancardi CM. Selfselected walking speed in individuals with transfemoral amputation: recovery, economy and rehabilitation index. Eur J Physiother. 2019;22:133–140.
Peyré-Tartaruga LA, Coertjens M. Locomotion as a powerful model to study integrative physiology: Efficiency, economy, and power relationship. Front Physiol. 2018;9:1789.
Bona RL, Bonezi A, Da Silva PF, et al. Effect of walking speed in heart failure patients and heart transplant patients. Clin Biomech. 2017;42:85–91.
Semaan MB, Wallard L, Ruiz V, et al. Is treadmill walking biomechanically comparable to overground walking? A systematic review. Gait Posture. 2022;92:249-257.
Riley PO, Paolini G, Della Croce U, Paylo KW, Kerrigan DC. A kinematic and kinetic comparison of overground and treadmill walking in healthy subjects. Gait Posture. 2007;26:17–24.
Malatesta D, Canepa M, Menendez Fernandez A. The effect of treadmill and overground walking on preferred walking speed and gait kinematics in healthy, physically active older adults. Eur J Appl Physiol. 2017;117:1833–
Herssens N, Verbecque E, Hallemans A, et al. Do spatiotemporal parameters and gait variability differ across the lifespan of healthy adults? A systematic review. Gait Posture. 2018;64:181–190.
Mian OS, Thom JM, Ardigo LP, Narici MV, Minetti AE. Metabolic cost, mechanical work, and efficiency during walking in young and older men. Acta Physiol. 2006;186(2):127-139.
Browning RC, Baker EA, Herron JA, Kram R. Effects of obesity and sex on the energetic cost and preferred speed of walking. J Appl Physiol. 2006;100:390–398.
Malatesta D, Vismara L, Menegoni F, Galli M, Romei M, Capodaglio P. Mechanical external work and recovery at preferred walking speed in obese subjects. Med Sci Sports Exerc. 2009;41:426–434.
Browning RC. Locomotion mechanics in obese adults and children. Curr Obes Rep. 2012;1:152–159.
Fernández Menéndez A, Saubade M, Millet GP, Malatesta D. Energy-saving walking mechanisms in obese adults. J Appl Physiol. 2019;126:1250–1258.
Walpole SC, Prieto-Merino D, Edwards P, et al. The weight of nations: an estimation of adult human biomass. BMC Public Health. 2012;12:439.
Bell AL, Brand RA, Pedersen DR. Prediction of hip joint centre location from external landmarks. Hum Mov Sci. 1989;8:3–16.
Bell AL. A comparison of the accuracy of several hip centre location prediction methods. J Biomech. 1990;23:617–621.
Davis RB, Ounpuu S, Tyburski D, Gage JR. A gait analysis data collection and reduction technique. Hum Mov Sci. 1991;10:575–587.
Leardini A, Cappozzo A, Catani F, et al. Validation of a functional method for the estimation of hip joint centre location. J Biomech. 1999;32:99–103.
Minetti AE, Ardigò LP, Saibene F. Mechanical determinants of gradient walking energetics in man. J Physiol. 1993;471:725–735.
Pavei G, Seminati E, Cazzola D, Minetti AE. On the estimation accuracy of the 3D body center of mass trajectory during human locomotion: inverse vs. forward dynamics. Front Physiol. 2017;8:129.
Winter DA. Biomechanics and Motor Control of Human Movement. Wiley; 2009.
Willems PA, Cavagna GA, Heglund NC. External, internal and total work in human locomotion. J Exp Biol. 1995;198(Pt 2):379–393.
Cavagna GA. Physiological aspects of legged terrestrial locomotion. Springer; 2017.
Cavagna GA, Kaneko M. Mechanical work and efficiency in level walking and running. J Physiol. 1977;268(2):647–81.
Cavagna GA, Thys H, Zamboni A. The sources of external work in level walking and running. J Physiol. 1976;262(3):639-657.
Di Prampero PE. La locomozione umana su terra, in acqua, in aria: fatti e teorie. Edi- Ermes; 2015.
Zajacova A, Montez JK. Explaining the increasing disability prevalence among mid- life US adults, 2002 to 2016. Soc Sci Med. 2018;211:1–8.
Brown RT, Covinsky KE. Moving prevention of functional impairment upstream: is middle age an ideal time for intervention? Womens Midlife Health. 2020;6:4.
Cohen J. Statistical power analysis for the behavioural sciences. 2nd ed. Lawrence Erlbaum Associates; 1988.
Watt JR, Franz JR, Jackson K, Dicharry J, Riley PO, Kerrigan DC. A threedimensional kinematic and kinetic comparison of overground and treadmill walking in healthy elderly subjects. Clin Biomech (Bristol, Avon). 2010;25:444–9.
Moissenet F, Leboeuf F, Armand S. Lower limb sagittal gait kinematics can be predicted based on walking speed, gender, age and BMI. Sci Rep. 2019;9:9510.
Stoquart G, Detrembleur C, Lejeune T. Effect of speed on kinematic, kinetic, electromyographic and energetic reference values during treadmill walking. Neurophysiol Clin. 2008;38:105–116.
Guzelbulut K, Suzuki K, Shimono S. Singular value decomposition-based gait characterization. Heliyon. 2022;8:e12006.
Minetti AE, Capelli C, Zamparo P, di Prampero PE, Saibene F. Effects of stride frequency on mechanical power and energy expenditure of walking. Med Sci Sports Exerc. 1995;27:1194–1202.
Nardello F, Ardigò LP, Minetti AE. Measured and predicted mechanical internal work in human locomotion. Hum Mov Sci. 2010;30(1):90-104.
Dal U, Erdogan T, Resitoglu B, Beydagi H. Determination of preferred walking speed on treadmill may lead to high oxygen cost on treadmill walking. Gait Posture. 2010;31:366–369.
Martin JP, Li Q. Overground vs. treadmill walking on biomechanical energy harvesting: An energetics and EMG study. Gait Posture. 2017;52:124–128.
Derechos de autor 2024 Gabriel Fábrica Barrios, Carol M Torres, Carlo Biancardi, Germán Pequera

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
Los autores conservan sus derechos de autor y ceden a la revista el derecho de primera publicación de su obra, el cuál estará simultaneamente sujeto a la licencia Creative Commons Reconocimiento 4.0 Internacional License. que permite compartir la obra siempre que se indique la publicación inicial en esta revista.









