
SOCIEDAD URUGUAYA DE GEOLOGIA

REVISTA

Agosto 1984

Año I · Nº1

AVISO

Proximamente se realizará una Jornada sobre Geología y Estratigrafía del Cuaternario en el Uruguay. Con entrada libre para socios y no socios. Por más información dirigirse a Soriano 831 los días lunes de 20 a 21 hr.

Ha trascurrido un año ya de la reactivación de la Sociedad Uruguaya de Geología, y, aquí estamos cumpliendo una vieja/aspiración. Esto es, y será / nuestro órgano de comunicación escrita.

Este primer número es el pa so inicial de un esfuerzo que deberá ser de todos, de cada / uno de nuestros socios.

Es el deseo de la Comisión directiva de la Sociedad Uruguaya de Geología, que todos Ustedes se acerquen, y colaboren para asegurar el mejoramiento y la continuidad de esta publicación, pues sólo de esa manera se justificará plenamente el esfuerzo de su creación

La Comisión Directiva.

COMISION DIRECTIVA (1983-1985):Presidente:Ing.Agr.Erling Heide. Vice-Presidente: Héctor de Santana; Secretario Ceneral:Ing.Agr. Pedro Othyancabal;Tesorero: Lic. Magdalena Mandía; Secretario de Relaciones y Organización: Lic. Néstor Campal. COMISION FISCAL: Dr. Sergio Abal; Ing. Juan Caorsi; Lic. Jorge Montaño.

Redactor responsable: E. Heide. Lázaro Gadea 955. Coordinadora: Lic. J. Ordeix. Solano García 2488.

HAGA SUS AVISOS PUBLICITARIOS EN LA REVISTA DE LA SOCIEDAD URU_GUAYA DE GEOLOGIA.

Diríjase a :Soriano 831, los días lunes de 19:30 a 21 horas.

SOBRE LOS FINES DE LA SOCIEDAD UPUGUAYA DE GEOLOGIA

En Montevideo, el 16 de agosto de 1972 quedó constituída la Sociedad uruguaya de Geología cuyos fines se trans criben a continuación, tomados de los Estatutos vigentes: Artículo 2º

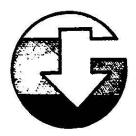
- A) Fomentar el conocimiento y el estudio de la Geología en el país y su difusión mediante medios propios y/o con la cooperación de autoridades, de distintas instituciones científicas nacionales y/o extranjeras, ya sea mediante conferencias, cursillos, exposiciones y otros medios que la Comisión Directiva considere conveniente.
- B) Vincular a los distintos profesionales, técnicos y aficionados de-la Geología entre sí.
- C) Propender a la formación y especialización de técnicos nacionales en la materia así como a su jerarquización v promoción profesional en lo interno como en lo internacional.
- D) Defender el patrimonio consituído por las riquezas na turales de nuestro subsuelo, promoviendo su explotación racirnal en beneficio del país.
- E) Editar publicaciones científicas en las que se incluirán los trabajos de los socios y otros trabajos originales que se reciban a tal efecto de acuerdo a la reglamentación que se establezca.
- F) Formar una bibliotec# especializada en Geología v un fichero de publicaciones geológicas.
 - G) Formar una colección de minerales y rocas.
- H) Realizar excursiones de estudio y recolección de materiales.
- I) Vincularse con organizaciones similares del extranjero
- J) Realizar bianualmente un Congreso Uruguayo de Ceología.

CONCURSO

Se llama a Concurso para la selección del Logotipo de la Bociedad Uruguaya de Geología.

Tamaño: 15 cm por 15 cm.

Color: Blanco y Negro.


Motivo: Debe figurar una piqueta y decir: SOCIEDAD UPUCUAY:
DE GEOLOGIA

Por autor se puede presentar hasta tres diseños.

Fecha de entrega: 24 de setiembre de 1984. Soriano 831.

Premio: Un mineral representativo.

Los participantes deberán entregar dos sobres: uno contenier do los trabajos firmados con seudônimo, y el otro sobre por e lado externo figurará el seudônimo y en el interior sus datos personales.

GEOMIN S. A.

"CALIZA FRAILE MUERTO"

CERRO LARGO - FRAILE MUERTO - AG. ANCAP TEL. 35 MONTEVIDEO - CARLOS ANAYA 2684 - TEL. 80 49 86

MINA FLORENCIA

FLUORITA

GEOSOL srl.

AVDA. 18 DE JULIO 1283/307 . T: 91.40.32

*ASESORAMIENTO GEOLOGICO.

*PAVIMENTOS ASFALTICOS.

*PAVIMENTOS ARTICULADOS CON

ADOQUINES DE HORMIGON.

*OBRAS DE INGENIERIA CIVIL.

*OBRAS DE AROUITECTURA.

*CONSERVACION DE EDIFICIOS.

INSTRUCCIONES A LOS AUTORES PARA LA PREPARACION DE MANUSCRITOS

- -La Revista de la Sociedad Uruguaya de Geología es impresa en la forma y dimensiones de esta publicación.
- -El original y una copia del artículo, deberá ser enviado a la Comisión Directiva. El autor deberá guardar una segunda copia.
- -El texto debe estar completo y definitivamente revisto.
- El manuscrito deberá ser dactilografiado a doble espacio, de un solo lado del papel, observando un margen de 4cm en el lado izquierdo y superior, 2,5cm en el lado derecho y 3 cm en el lado inferior. Deberá utilizarse papel blanco formato carta (21 por 28 cm). Las páginas deberán ser numeradas a la derecha, en lo alto, de manera consecutiva.
- -Gráficas o dibujos deberán ser hechos en papel vegetal o en papel blanco. Los mapas deberán presentar escala gráfica. -Las referencias bibliográficas se detallarán al final del texto, en orden alfabético.
- Los artículos deberán ser lo más concisos posible. Solamente en casos muy especiales, dada la importancia v oportunidad del asunto a publicarse, serán aceptados manuscritos con número superior a 30 hojas dactilografiadas, incluyendo ilustraciones, tablas, lista de referencias bibliográficas, etc.

¿QUE ES CUP?

UNA NUEVA EMPRESA

que surge a raíz de la necesidad

iada vez mayor de obtener pozos de agua
en distintas zonas del país.
Aunque es notorio que casi todo

accional presenta posibilidades
para la extracción de agua
no todos los suelos
tienen iguales características.
Esto condiciona la demora
ie la perforación pues resulta evidente
para lo es lo mismo un subsuelo granítico
que uno arenoso.
Sin embargo,
COMPANIA URUGUAYA DE
PERFORACIONES es

CAPAZ DE OBTENER

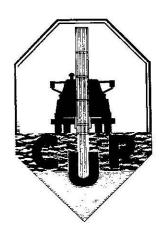
rosos resultados en cualquier tipo de fielo, con una velocidad cuarenta veces mayor a la empleada en nuestro medio por los sistemas tradicionales.

Esto es lo que nos permite afirmar que Ud. tendrá

SU POZO DE AGUA EN EL DIA

sin demoras innecesarias reduciendo sensiblemente los costos reperativos, ofreciéndole así un precio sumamente económico además de amplios créditos.

Poseemos un moderno equipo, totalmente importado, que revoluciona las técnicas de perforación, logrando además del encamisado simultáneo, una velocidad de penetración en roca de 10 metros por hora.


CREDITOS

BROU(Activo fijo)Alumbramiento e instalaciones: 4 AÑOS
BROU(Plan Agropecuario) Aguadas: 5 a 9 AÑOS
BROU(Crédito Industrial): 3 AÑOS
BROU(Crédito promocional): 3 AÑOS

SEGUN DECRETOS VIGENTES:

Inversión 100% descontable del IMAGRO, incluido el IVA

Si estos créditos no se ajustan a sus necesidades, consúltenos.

COMPAÑIA URUGUAYA DE PERFORACIONES

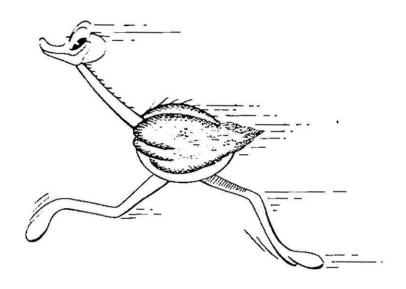
Cuareim 2196 / Tel. 29 31 95 MONTEVIDEO / URUGUAY

HOMENAJE AL PROFESOR LIC. JORGE CHEBATAPOFF

El Lic. Jorge Chebataroff pasó parte de su infancia en el Departamento de Flores, en el medio rural, donde aprendió a amar la naturaleza. Pradera, monte natural y lomas de suaves pendientes estaban en su entorno y a lo lejos ... los Cerros de Ojosmín.

La familia Chebataroff decidió trasladarse a otro ambien te más propicio para que sus hijos pudieran estudiar y se ins talaron en Montevideo, en la Villa del Cerro. Desde ahí Jorge Chebataroff se dirigía diariamente en lancha, cruzando la Bahía, hasta la Facultad de Ingeniería cita en el local de Lin dolfo Cuestas 1525, donde hasta hace unos pocos años funciona ba la Facultad de Humanidades y Ciencias. Su aptitud y entusiasmo a enseñar lo impulsó a tener una academia junto con otros colaboradores. Concursó en Enseñanza Secundaria en Astronomía y Geografía y obtuvo el primer puesto.

Primero su contacto con Karl Walther en estudios de Geología y posteriormente el integrar la "Escuela de Elzear // Giuffra "(que impulsó y desarrolló la Geografía Física en el Uruguay) determinaron en él su inclinación hacia la Geografía Física. Dedicó su vida a la Geomorfología, profundizando sus estudios preferentemente en la Geomorfología del Uruguay y su relación con áreas vecinas, especialmente con Pío Grande del Sur, Brasil.


Numerosas publicaciones y comunicaciones a Congresos de muestran su constante búsqueda para hallar una adecuada sectorización geomorfológica del país. Como temas de su preferen cia en investigación en áreas más restringidas podemos citar las de Sierra Mahoma, la Costa Platense y Atlántica. Vincula da a la Geografía Física se abocó al estudio e investigación en Biogeografía y Ceología.

Fue profesor del Instituto de Estudios Superiores, del Instituto de Profesores "Artigas" y Director del Departamento de Geografía de la Facultad de Humanidades y Ciencias. Dotado de una didáctica ejemplar transmitió siempre, hasta en sus últimos días, su interés y entusiasmo a través de sus cátedras en las Licenciaturas de Geografía y Geología, así como a nivel popular volcó sus conocimientos en propramas de Televisión Educativa, y en el suplemento dominical del diario El Día.

Miembro de la Unión Geográfica Internacional, de la Sociedad de Botánica, fundador de la Asociación de Geógrafos del Uruguay y de la Sociedad de Geología del Uruguay demuestra su amplio espectro como investigador en ciencias afines.

Isabel Daroczi.

(Julio, 1984).

Un gran paso...

...COMO EL QUE ESTAMOS DANDO POR LA CONSULTORIA NACIONAL, DESDE HACE 9 AÑOS. PRESTANDO SERVICIOS DE ASESORAMIENTO EN:

hidrogeología, minería y geotecnia.

ESTUDIO GEOMINERO LTDA.

Pza. Independencia 749 p.4, tel. 916474, Mdeo.

18 de julio 780, Minas

ANTECEDENTES DE LA ENSEÑANZA DE LA GEOLOGIA EN EL URUGUAY

Homenaje al Profesor Dr. Karl Walther (1878-1948).

De una revisión de la Enseñanza de la Geología en nuestro país, a lo largo de este Siglo XX, surge este artículo dedica do al Profesor Karl Walther.

Su venida al país, en el año 1908, responde a la iniciativa gubernamental de fundar el Instituto de Agronomía, en Montevideo, que fue incorporado más tarde a la Universidad de la República como Facultad de Agronomía. Tuvo a su cargo organizar la Cátedra de Geología, Mineralogía y Agrología. Su actuación se extendió hasta 1938, recibiendo en 1944 el título de "Profesor Honoris Causa", por resolución del Consejo de la Facultad de Agronomía.

Desde 1921 a 1940 fue temporariamente colaborador del Instituto de Geología y Perforaciones del Ministerio de Industria.

Luego de una larga enfermedad, que comenzó a manifestarse en el año 1915, ocurre su deceso en Montevideo, en 1948.

A pesar de no haberlo conocido personalmente, su extensa bibliografía publicada en nuestro país, de la cual he tomado las citas que siguen, me ha permitido apreciar su sólida for mación y su dedicación a la materia.

-..."la función del profesorado no debe ser unicamente la de dictar cursos, sino de realizar estudios originales en bien del país y de la misma enseñanza. Fue por eso que se pu so a contribución de tal finalidad, hace diez a doce años, / una cantidad de extranjeros, especialistas, que si bien, como se ha dicho, incorporaron a la enseñanza americana los vie jos planos de sus viejas escuelas y aún, lo que es mucho peor, dictaron los cursos con textos europeos y con programas europeos, tenían en cambio la preparación necesaria para realizar la finalidad primordial de toda institución de enseñanza superior: es decir, para la investigación, sin la cual queda des naturalizado el carácter de enseñanza superior." (Tomado de su obra: "Líneas fundamentales de la estructura geológica de la República Oriental del Uruguay, Rev. Inst. Nac. Agron. Mdeo. 1919).

-"Será nuestra primera actitud llevar a los jóvenes estudiantes de geología fuera de la ciudad y con el mapa v martillo en la mano hagamos algunas observaciones de contenido geológico, paleontológico y petrográfico..." (Tomado de su obra: "La estructura geológica de los alrededores de Mdeo.. Conferencia en la Soc. Linneana).

Estas citas demuestran la importancia dada a la Investigación en la Enseñanza Superior y a la Geología de Campo. To six Timetress tublicaciones, los temas tratados manifilastan eficias tempoimientos mineralóxicos y petrográficos, inicatifo en parte su especialidad. Diaboró informes sobre albinis y crimientos de valor económico como :Mármol (1912), Esmeril 1913, Talco (1915), Agatas (1920), Carbón de piedra 1814.

Reconocida la existencia de riquezas minerales (según lo deruestra el informe de Marstrander del año 1916) afirmó que;

-... no ya la existencia, sino la extensión y el valor técnico de los yacimientos dependen en absoluto de la estructura peclógica de la región, la que naturalmente debe ser estimiada científica y sistenáticamente por quienes se permiten estitir un juicio sobre aquellos; además..."la explotabilidad estalamente depende de los conocimientos geológicos y de la experiencia técnica actuales, sino, lo que habría que poner en primera línea de las condiciones generales (situación, etc.) del yacimiento y el valor industrial momentáneo del producto a extraer. En el mismo artículo cita:..."por esto, al aconse for la creación del Instituto de Geología en 1911, afirmé / la labría de estudiar el país departamento por departamento. Desgraciadamente mi opinión no fue escuchada." (Tomado la obra: "Sobre la existencia de yacimientos minerales y rocas explotables en la R.O.U."Rev. Fac. Agr. Mdeo. 1932).

Gracias a trabajos posteriores, hoy contamos con parte fal mapeo del territorio nacional a escala 1:100.000, debenos continuarlo, hasta completarlo en su total extensión.

Asume una actitud un tanto pesimista, al evaluar los recursos minerales del país, pero:

-... "sería para mí una agradable decepción, por así dezirlo, en no ver confirmado, por los resultados de investiraciones detalladas y de la explotación, mi opinión escépzica sobre tal o cual yacimiento. Dicha decepción contriluiría a hacer independiente el país, en la medida de lo posible, de la importación de productos extranjeros. Es la estructura geológica la que ha de estudiarse antes de emitir un juicio y la descripción de los yacimientos de valor evenqual debe referirse, pues, a los grandes capítulos de la his zeria geológica del país".. "Parece un atentado, el que un -aslogo, particularmente si no ha nacido en el Uruguay, estudie el asunto bajo el lente crítico y discrimine entre lo variaderamente existente y los productos de la fantasía / creados por el afán muy humano de exagerar lo anhelado." Tomado de la misma obra: "Sobre la existencia de yacimientis minerales y rocas explotables en la R.O.U.. Pev. Fac. / Att., Mdeo, 1932).

Sobre la base de la investigación, se evitará construir castillos en el aire, desaprovechando esfuerzos humanos y capitales mal invertidos. Ya es tiempo de completar y actualizar el Inventario Minero Nacional, a 68 años del publicado por R. Marstrander.

En la Investigación, el Profesor Walther, enfrentó limitaciones por falta de recursos:

- -..." en el rubro de viáticos, arma elemental e indispensable sin la que no se puede abordar la exploración científica de un país, sobre lo que descansa el análisis de laboratorio". (Tomado de "Líneas fundamentales de la estructura geológica de R.O.U.. Mdeo. 1919).
- -¡Que futuros investigadores dispongan de recursos más amplios que el autor¡"(última conclusión de su obra :"El / Basamento cristalino de Montevideo. Boletín N°33 del Instituto Geológico del Uruguay, Mdeo. 1947).

A pesar de las dificultades, con su voluntad inquebran table superó la falta de recursos y de salud, logrando trascender en la historia de la Ceología en el Uruguay, por su actuación como docente e investigador.

Si en 1908, por iniciativa del gobierno, se creó el Instituto de Agronomía y se contrató al Dr. Karl Walther, junto a un grupo de colaboradores; hoy, 1984, contamos con las instituciones. Será suficiente, para empezar, con que la Universidad emprenda la búsqueda de nuevos criterios de enseñanza e investigación, más convenientes para los objetivos y recursos nacionales.

No es posible tener una política educativa coherente -universitaria o no- sino en el marco de referencia de un Proyecto Nacional de largo plazo, con características ideológicas y objetivos concretos bien definidos.

(agosto, 1984)

Lic. María Josefina Ordeix.

Granulados de Mármoles - Carbonato de Calcio Caolín - Dolomía - Tiza - Magnesita - Talco Mármoles - Tierra Refractaria - Feldespato Aserrajes de Mármoles y Granitos

Teléfs. 58 84 02 - 58 83 33 Habana 2937/83 Montevideo

CONSIDERACIONES PARA EL URUGUAY

Este texto está basado en el análisis de las publicaciones:

-Resultats de l'enquete sur la repartition des "geologues" dans le monde B.R.G.M. (80 SGN 408 GEO). 1980,54 p..

-Distribution of Geologist around the world. Expuesto por los Drs. J. Barroul, J. Bodelle y Ph. Rolet, durante las sesiones del 26 Congreso Internacional de París, en 1980, a iniciativa del Comité organizador y la IUGS.

-Distribución de los geólogos alrededor del mundo. La ubicación de Argentina. C. Cingolani. C.S.P.G. Bol. Año 6 N°5. Bs. As. Argentina . 1982.

La Tabla 1, las gráficas N°1, N°2 y N°3 han sido tomadas de estos trabajos y algunas parcialmente modificadas. Tomando los datos de número de geólogos de estos trabajos hemos realizado la relación geólogos-superficie y para todas las relaciones hemos centrado la atención en el caso de nuestro país.

Finalmente se ha establecido algunas relaciones entre parámetros económicos a fin de completar el marco de nuestro país, en materia geólogico-minero de manera primaria.

No es un aporte al trabajo de las investigaciones realizadas, sino que simplemente intenta una clarificación de la situación de Uruguay, en relación a los demás países encuestados en esta materia.

Esto es posiblemente uno de los grandes valores de los estudios antes mencionados, ya que nos permite realizar este tipo de comparaciones sin pretender catalogarla. Por último, estos análisis, son sólo un esbozo inicial de nuestra situación.

ENCUESTA Y ANALISIS

La encuesta realizada y expuesta por los Drs. Barrouel, Bodelle y Rolet, cubría todos los campos de especialización bajo la forma de nueve items. Fueron revisados 85 países, los cuales constituyen el 63% de la población mundial y el 70% de los continentes (excluída la Antártida)

La separación por continentes reveló el siguiente des \underline{a} rrollo, según Cingolani (1982):

Continente	Países	%de la populación representada en servicio	%de la superficie representada en servicio	Geologo		
Africa	27	47	59	3.623		
América	16	64	63	52.518		
Asia	14	56	54	107.255		
Europa	22	91	98	193.225		
Oceanía	6	9 7 ·	99	4.196		
Total	85	63	70	360.817		

TABLA 1

Esta estadística primera indica que en sentido amplio, hay aproximadamente 140 geólogos por millón de habitantes, y redondeando por defecto un geólogo cada 7.000 habitantes. y

Tomando este promedio vemos que nuestro país presentaba en 1977, un déficit considerable en geólogos, ya que le correspondería una cifra de alrededor de 400 geólogos. El número de geólogos en esa fecha en nuestro país era más de / veinte veces inferior al promedio mundial y también con residual negativo frente a la recta de regresión, aunque el número de geólogos se duplicara en los establecidos por la encuesta.

En nuestro país recién en 1978, se concreta la apertura de una carrera Universitaria, para capacitar en materia de Geología.

RELACION: GEOLOGOS-HABITANTES

Según Cingolani (1982) resumiendo de Barrouel, Bodelle y Rolet (1980), la gráfica de la Fig. l en la página ,sugiere las siguientes observaciones*:

- l. En Europa, 21 países están representados en dos grupos separados, ambos tienen residual positivo (esto es alto número de geólogos por número de habitantes en promedio), pero residual negativo frente al promedio mundial.
- 2. En 15 países de Africa (de 27 tomados) están en un grupo con un residual negativo con respecto a la recta de correlación y residual negativo frente al promedio mundial (esto es bajo número de geólogos por habitante en promedio).
- 3. Los países americanos están distribuídos a lo largo de la línea de regresión, 9 de los 16 tienen residuales negativos frente a la recta de regresión, y solo U.S.A. y Canadá están en el promedio mundial o por encima de él.

*NOTA: ver la Nomenclatura de los países en la Pág.27

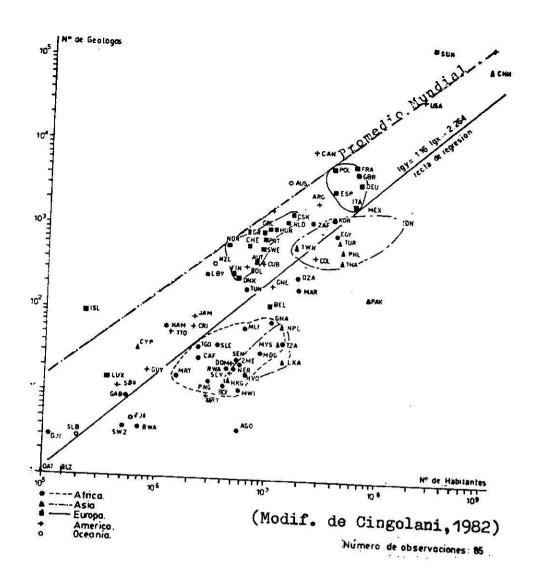


FIG. 1 : Relación Geólogos-Habitantes.

- 4. Los países asiáticos están claramente senarados en dos grupos indistintemetos que en general muestran residual negativo.
- . 5. Los páíses de Oceanía están distribuídos a ambos lados de la línea de regresión, con solo Australia por encima del promedio mundial.

En esta gráfica solo se ha agregado el promedio mundial y las consideraciones respecto a él, en el resumen realizado anteriormente.

Según Cingolani (1982), la Fig. l señala la relativamente baja cantidad de geólogos en países africanos comparado con el tamaño de su población. En contraposición el número de geólogos en países europeos y norteamericanos, es significativamente al-

to en promedio, al estudiar la recta de regresión. Canadá presenta una relación de 2,7 "tiempos" del promedio mundial.

Con respecto a nuestro país se pueden realizar las siguien tes presiciones:

l. Dentro del alineamiento de los países americanos, Uruguay tiene déficit de geólogos, en relación al número de habitantes, tanto tomando el promedio mundial como ya habíamos visto como comparado con la recta de regresión, estando en peor
posición Suriname y que Guyana, cuyos residuales son positivos
para la recta de regresión.

Países como Jamaica y Costa Rica con parecido número de habitantes con Uruguay tienen residuales positivos.

La situación de nuestro país, medido en estos parámetros sería similar a la de El Salvador y República Dominicana.

- 2. En 1977, Argentina contaba con un geólogo cada 11.000 habitantes y Uruguay lo hacía con un geólogo por encima de los 100.000 habitantes (1/300.000 según los trabajos de base). Para completar el panomama Canadá cuenta con un geólogo cada 3.000 habitantes en forma aproximada y Estados Unidos con un geólogo cada 7.000 habitantes de igual manera. Hemos incluído a Brasil cuya relación se sitúa en un geólogo cada 25.000-30.000 habitantes aproximadamente.
- 3. De los países de Europa solo Bélgica se encuentra con una relación algo similar (1/100.000 aprox.).
- 4. La ubicación de Uruguay en la recta de regresión es algo parecida a la de los países africanos (15 de 27 tomados), los cuales poseen residuales negativos.
- 5. Con respecto a los países asiáticos, la situación de nuestro país es similar a la de Hong-Kong, Nepal y de Malasia
- 6. Comparándonos con los páíses de Oceanía, nos acercamos a la realidad de Papouasia y Nueva Guinea
- 7. Estas consideraciones a menos que se aclare se refieren a la recta de regresión, y es probable que las cifras manejadas para nuestro país podrían ser algo superior en esa fecha, lo cual no modifica significativamente las relaciones establecidas.

RELACION: GEOLOGOS-PRODUCTO BRUTO NACIONAL.

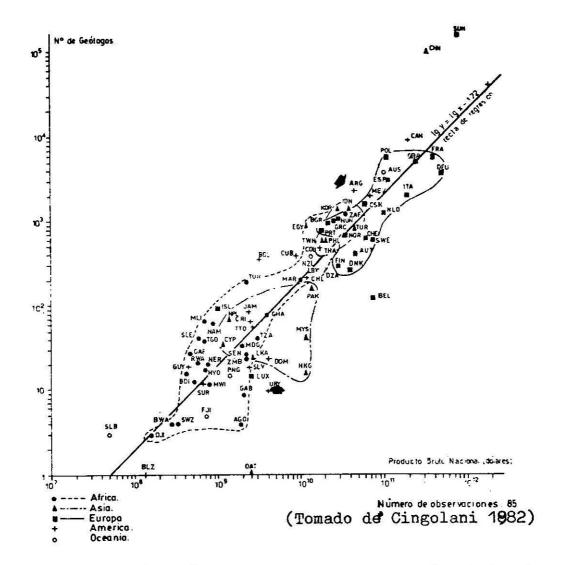


FIG. 2: Relación Geólogos-Producto Bruto Nacional (PBN).

Cingolani(1982) realiza el siguiente comentario de esta gráfica: "La Fig.2 muestra el número de geólogos con respecto al Producto Bruto Nacional y destaca la cerrada correlación entre las dos figuras. Los países están agrupados en la línea de regresión, formando dos zonas elongadas y continuas para Africa y Europa y dos distintas agrupaciones, para Asia con China y Qatar que son entidades claramente separadas. Con respecto a China, se puntualiza que la respuesta al cuestionario no distinguía entre geólogos y técnicos y esto puede ser importante para la dimensión del residual positivo. Otro gran residual positivo que se nota es para Rusia. Negativos para Angola, HOng-Kong, Qatar y Bélgica. Los países de América y Oceanía están distribuídos todos a lo largo de ambos lados de la línea de regresión.

Este gráfico además indica que la relación entre el número de geólogos y el PBN es similar para países muy diferentes como Djibouti, Ghana, Gran Bretaña y Estados Unidos".

Se analizamos el caso de nuestro país, podemos ver la siguiente situación:

- 1. Uruguay posee un residual negativo en esta relación, y con respecto a los países americanos una situación similar a la de El Salvador y República Dominicana. Con parecido PBN se encuentran Tinidad Tobago, Costa Rica, Jamaica y Bolivia, pero todos estos por encima de la recta de regresión.
- 2. Tomando para esa fecha una mayor proporción de geólogos que la establecida, nuestra situación sería semejante a la del grueso de los países africanos y de la del sector de los países de Oceanía integrados por Hong-Kong Malasia, Pakistán, Sri Lanka, Chipre y Nepal, estos dos últimos con residual positivo.
- 3. Tanto la relación como las cifras absolutas marcan una situación deficitaria de nuestro país con respecto a los países europeos en su mayoría como con gran parte de los países americanos.
- 4. Esta relación vuelve a marcar nuestro bajo número de geólogos contra el parámetro en cuestión.

RELACION: GEOLOGOS/10⁶ Hab.-PBN per Capita

Cingolani (1982), comenta sobre la gráfica de la Fig.3 de la pág. lo siguiente:

"Esta relación tiene un bajo coeficiente de correlación (0.7), e indica el grado de dispersión que es prande. Un número de países difiere significativamente de la línea de regresión: Angola y Qatar con residuales negativos y China, Rusia e Islandia con residuales positivos. Los países Europeos constituyen un caso inusual según estas representaciones:

- a) De 10 países tomados de 22 tienen entre 83 y 108 geólogos por 106 habitantes, entanto que el PBN varía entre 2.100 a 10.000. Una pequeña variación en el número de geólo gos (25) corresponde a una gran variación en PBN per capita (7.900).
- b) Contrariamente 11 países tomados de 22 tienen entre 13 y 162 geólogos por 106 habitantes, por 10 que el PBN per capita está en el rango de 6.000-10.000, la gran variación en el número de geólogos (148) corresponde a una relativamente pequeña variación en el PBN per capita (4.000)."

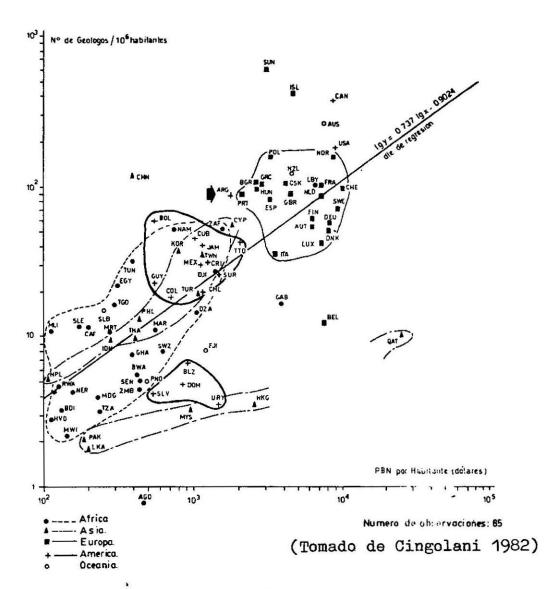


FIG. 3 Relación: Geólogos/10 Hab.-PBN per capita.

"Es de señalar que el tipo de economía (planificada o no planificada) parece no tener efecto en el número de geólogos. Países con igual tamaño (Populación-PBN), muestran resultados similares prescindiendo de la naturaleza de su economía (Cingolani, 1982).

Observando la gráfica se pueden realizar algunas consideraciones para el caso de nuestro país:

1- Nuestro país se reune conformando uno de los dos gru pos de los países americanos, conjuntamente con El Salvador, Belice y República Dominicana. Dentro de este grupo, Uruguay tiene mayor PBN per capita y menor número de geólogos, pero el grupo entero presenta un déficit de geólogos. El segundo grupo de países americanos se sitúa en promedio levemente / por encima de la recta, con variación similar en el PBN per capita que el anterior. Ouedan fuera de estos dos grupos, Ca nadá y Estados Unidos con alto PBN per capita y alto número de geólogos per capita. Argentina también presenta residual posítivo.

- 2- Para el grupo que integra Uruguay un cambio de aproximadamente 500-1.500 dólares per capita corresponde a una variación de 3-6 geólogos por cada $10^6\,$ habitantes.
- 3- Con respecto a los países europeos tenemos tanto relación menor, como PBN per capita menor y menor número de geó logos cada 10⁶ habitantes. Igual relación mantememos con el grupo de los países americanos integrados por CAnadá, Estados Unidos y Argentina.

RELACION: NUMERO DE GEOLOGOS-SUPERFICIE

Rel.	Número de países (considerados 71)										
Ser.	1/0.05										
Cont.	1/0.2	1/0.3	1/0.5	1/1	1/2	1/5	1/10	1/20	1/50	1/100	1/300
AFRICA (24)				1	5	4	1	5	4	2	2
EUROPA (19)	12	4		1	2						
AMERICA (13)	1	2		1	4	3	1	1			
OCEANIA (5)				1	1	1	1		1		
ASIA (10)	2	· .		2	1.	1	3	1			

Nota: Las clases fueron realizadas tentativamente. El denominador deberá ser multiplicado por 10^3 para obtener el valor de la superficie expresada en ${\rm Km}^2$.

En este conjunto podemos ver que:

1) Africa de 24 países tomados presenta en % acumulativos:
4% de sus países con una relación de 1 geólogo cada 500-1000km²
25% de sus países con una relación menor a 1 geólogo cada 2000km²
42% de sus países con una relación menor a 1 geólogo cada 5000km²
66% de sus países con una relación menor a 1 geólogo cada20000km²
83% de sus países con una relación menor a 1 geólogo cada50000km²

Africa es el único continente con países con relación superior a un geólogo cada 50.000 Km² como Angola, Mauritania y Niger. Además no posee países con relación menor a un geólogo cada 500 Km² y la distribución de sus países es bastante irregular.

- 2) Europa presenta de 19 países tomados, los siguientes porcentajes acumulativos:
- 63% de sus países con relación de 1 geólogo cada 50-200 Km² 84% de sus países poseen 1 geólogo por debajo de los 300Km² 100% de sus países poseen 1 geólogo por debajo de los 2.000Km²

En este caso, puede verse una agrupación bien definida. los países que difieren (16%) en algo tienen poco peso cuanti tativamente, como veremos en las siguientes gráficas, y se tra ta de Finlandia, Islandia v Norúega.

3) América presenta de los 13 países tomados los siguientes porcentajes acumulativos:

23% de sus países poseen relación menor a 4 geólogo cada 300km²
30% de sus países poseen relación menor a 1 geólogo cada 1000km²
61% de sus países poseen relación menor a 1 geólogo cada 2000km²
84% de sus países poseen relación menor a 1 geólogo cada 5000km²
100% de sus países poseen relación menor a 1 geólogo cada 20000km²

El área considerada por estos 13 países representa alrede dor del 70% de la superficie de América. Con la incorporación de Brasil se contemplaría más del 95% de la superficie de este continente. Estados Unidos y Canadá suman el 67% de la superficie y el 72% de los geólogos del continente americano.

Los países con relación menor a un geólogo cada 300 km² / son Estados Unidos, Cuba y Jamaica. En las gráficas posteriores se verá que Estados Unidos y CAnadá por su gran superficie v su gran cantidad de geólogos practicamente determinan los promedios del continente.

- 4) Oceanía (5 países tomados) presenta los siguientes porcentajes acumulativos:
 - 20% de sus países poseen 1 geólogo para 500-1000 km².
 - 40% de sus países poseen 1 geólogo para menos de 2000 km².
 - 60% de sus países poseen 1 geólogo para menos de 5000 km2.
- 80% de sus países poseen 1 geólogo para menos de 10000km2.
- 100% de sus países poseen 1 geólogo para menos de 20000km2.
- 5) Asia con 10 países tomados presenta los siguientes porcentajes acumulativos:
 - 20% de sus países presentan I geólogo para menos de 200 km^2 .

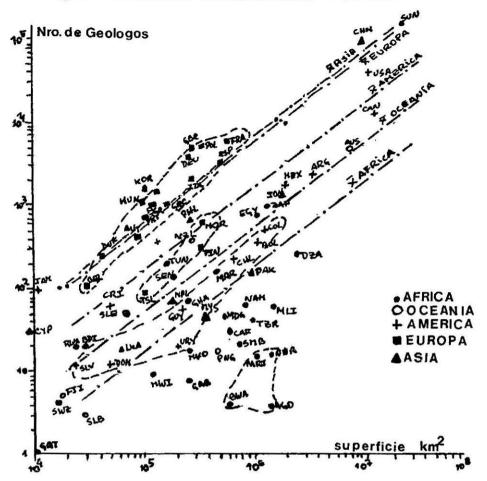
50% de sus países presentan l geólogo para menos de 2000 km^2 . 60% de sus países presentan l geólogo para menos de 5000 km^2 . 90% de sus países presentan l geólogo para menos de 10000 km^2 . 100% de sús países presentan l geólogo para menos de 20000 km^2 .

De los dos países preponderantes, China y Corea, el que incide preponderantemente en los promedios asiáticos es China, ya que representa más del 70% de la superficie asiática y sus geólogos constituyen más del 90% de los geólogos del continante. Para China, hay que hacer la consideración similar para la de la relación Geólogos-Habitantes.

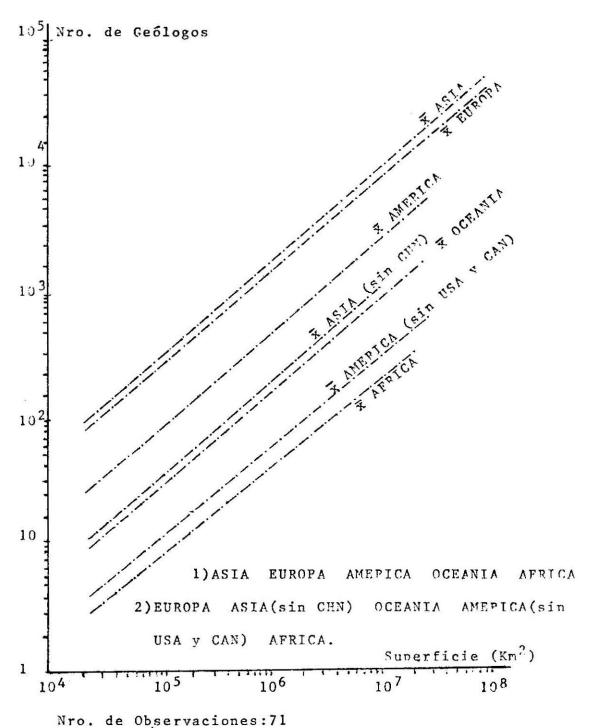
Analizando las gráficas de la Fig. 4 y de la Fig. 5 de la pág. 22 y 23

1) Para el continente africano la relación de geólogos-superficie se sitúa aproximadamente en un geólogo cada 5000-6000 Km². Uno de los países con relación más baja es Angola con un geólogo para aproximadamente 300.000 Km², tratándose de un páís cón gran superficie y bajo número de geólogos.Por otro lado están Egipto,Africa del Sur, Rwanda, Senegal y Sie rra Leone on l geólogo cada 1.000-2.000 km² y Túnez con una relación algo menor.

Estos se pueden dividir en países con gran superficie y alto número de geólogos para ella, como Africa del Sur y Egip to (Países petroleros) y Países con escasa superficie y alto número de geólogos en relación. Están considerados acá los mismos países que para las relaciones anteriores menos Djubuti. Togo y República Arabe Libanesa.


2) El promedio asiático considerando China según las gráficas anteriores se sitúa por encima del europeo, y no considerando a China este promedio baja en aproximadamente ocho veces, para situarse por debajo del correspondiente a Europa y América.

Considerando a China, la relación asiática es de aproximadamente de un géólogo cada 100-200 km², no tomando en cuenta a China la relación promedialmente se sitúa en un geólogo cada 1.000-1.500 km² en forma aproximada. Además de China aparece con residual positivo Corea y con residual negativo Qatar. En esta relación están considerados todos los países de las gráficas anteriores excepto Hong-Kong, Taiwan, Thailandia y Turquía.


3) De los países americanos presentan residual positivo frente al promedio americano solo Estados Unidos, Cuba y Jamaica. Otros países como Costa Rica, Méjico, Argentina y Canadá con residual negativos se disponen a lo largo de la gráfica.

El promedio de todos los países americanos considerados se sitúa en alrededor de un geólogo cada 600-700 Km². Los

Fig. 4 RELACION: Nro.de Geologos - Superficie

Nro. de Observaciones:71

Nro. de Observaciones./1

FIG. 5: RELACION DE PROMEDIOS.

países americanos menos Estados Unidos y Canadá (USA con un geólogo cada 300 km² y Canadá con un geólogo cada 1000 km² aproximadamente) presentan una relación de un geólogo para unos 2.000 a 3.000 km². Tomando los datos aproximados para Brasil vemos que su relación se situaba en un geólogo cada 2.000-3.000 km², es decir, bajaría el promedio continental considerado en primera instancia y se situaría sobre el promedio sin USA y Canadá.

Para nuestro país podemos considerar en esa fecha una relación de un geólogo para aproximadamente de 10,000 km², lo cual nos pone en desventaja frente al 100% de los países europeos, frente al casi 50% de los países africanos, frente a más del 80% de los países americanos, frente al 80% de los países de Oceanía, y frente a más del 60% de los países asiáticos.

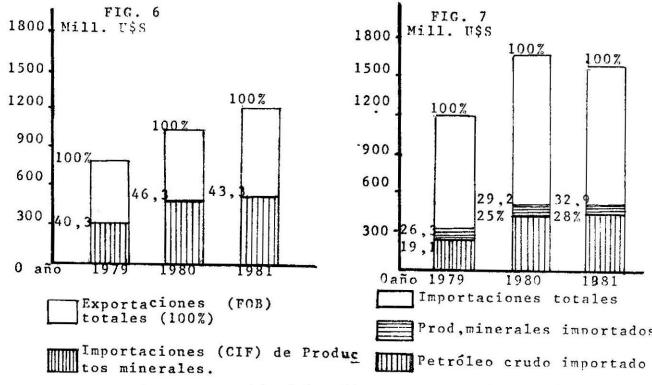
- 4) El caso de Oceanía (No se toma en cuenta a Nuevas Hebridas con respecto a los gráficos anteriores) tiene como promedio un geólogo cada 1.500-2.500 km². Con respecto a su media aparecen con residual positivo Australia y Nueva Zelandia y con residual negativo Fidji, Islas Salomon y Papoua sia y Nueva Guinea. Australia presenta una relación similar a la media del continente y a la media de los demás países. Su superficie pepresenta alrededor del 90% del total de los países considerados al igual que sus geólogos. Este continente presenta gran variabilidad y nuestro páís se asemeja a la situación de Islas Salomon.
- 5) Los países de Europa son los que presentan la relación más baja cuantitativamente. Este promedio se sitúa en un geó logo cada 150-250 Km². Con respecto a las gráficas anteriores no está considerados acá, los Países Bajos, Suiza y Checoslovaquia. Con respecto al promedio aparece un primer grupo con residual negativo. Como los casos de pero relación en Europa dentro de los países considerados se encuentra a Finlandia e Islandia con un geólogo cada 1.000-1.500 Km², aproximadamente.

Este continente presenta en líneas generales poca variabilidad y los mejores promedios mundiales.

CONCLUSIONES Y ALGUNAS CONSIDERACIONES

1) Tomando el caso de nuestro país un cálculo mejorado de los trabajos citados (más realista probablemente), nos in dicaría un geólogo cada 10.000 km² en forma aproximada para la fecha en cuestión, lo cual nos pone en franca desventaja frente al promedio mundial. Un cálculo grosero indica que / nuestro número de geólogos por superficie está unas treinta veces alejado del promedio mundial, estimado en alrededor de un geólogo cada 300 km².

Si analizamos nuestra situación actual (año 1983), la relación en nuestro país estaría en alrededor de un geólogo cada 4.000-5.000 Km², todavía muy lejos del promedio mundial que evidentemente debe de haber descendido.


- 2) El promedio mundial de geólogos por habitantes ha sido calculado en un geólogo cada 7.000 habitantes. Nuestro país presentaba en ese momento un geólogo por encima de los 100.000 habitantes y actualmente (año 1983) se podría ubicar en un geólogo cada 50.000 habitantes.
- 3) las relaciones entre número de geólogo y PBN también marca para nuestro país su bajo número de geólogo.
- 4% Los autores de los trabajos analizados calcularon con las reservas del caso, que el número total de geólogo se situaría en 1977, entre 500.000 y 570.000, y entre 750.000 y 850.000 en el año 2.000. A modo de parámetro evolutivo, se puede ver un aumento de 8.000 geólogos por año, lo que representaría un valor de 1,5% por año, con respecto al valor de 1977. En nuestro país, en estos últimos años el número de geólogo ha aumentado en una proporción mayor a la estimada en la evolución mundial pero hemos visto que aun estamos muy lejos de los promedios mundiales.

Esto señala claramente que el compromiso de la Licenciatura con nuestro país es de gran dimensión. Para el cumplimien to de este objetivo se hace necesario que dicha carrera cuente con un respaldo mayor a fin de satisfacer esta clara necesidad.

Además se ha calculado, que en los países en donde la geología avanza, una relación de un geólogo investigador-do-cente por cada tres geólogos, representando esto un efectivo balance entre geólogos "teóricos" y "prácticos", (Cingolani, 1982), relación también desbalanceada para nuestro país, lo cual señala la necesidad de la preparación de geólogos para los fines de Investigación y Docencia, requisito básico para un buen nivel técnico de los geólogos, para resolver la problemática de los Recursos Minerales del país.

5) Todas estas cifras son calculadas con las reservas del caso, pero se ha preferido, en lo que a los cálculos efectuados en este trabajo se refiere obrar por defecto. Esto llevaría aparejado una mejor relación para los demás países con respecto al Uruguay, lo cual acentuaría las diferencias ennumeradas que son así mismas muy notorias.

6) En forma primaria y tomando datos de "Uruguav en ci fras" del Banco Comercial (1982) se trata de mostrar la importancia de los recursos minerales, por medio de las relacio nes Exportaciones totales-vs-Importaciones de productos minerales (Fig. 6) y de Importaciones totales-vs-Importaciones de Productos minerales e Importación de petróleo crudo (Fig. 7)

La primera relación (Fig. 6) muestra que los productos minerales importados corresponden a más del 40% de nuestro exportaciones en los años considerados (1979-1980-1981) en dólares. Estas cifras hablan a las claras de la incidencia de los productos de la geología y minería en nuestro país.

La Fig.7 muestra la relación entre productos minerales importados respecto a las importaciones totales, siendo es ta de alrededor del 30% promedialmente en los tres años con siderados, destacándose la preponderancia de petróleo crudo dentro de los primeros.

Otro factor a considerar es el beneficio social que re presentaría la explotación de productos minerales naciona-les, junto a su beneficio económico.

Todo esto habla a las claras de la imperiosa necesidad de fortalecer la Licenciatura de Geología en nuestro país, ya que es necesaria una mayor cantidad de geólogos, apuntan do hacia el factor calidad (buen nivel técnico), a fin de atacar el subdesarrollo en que se encuentra la Geología y Minería de nuestro país.

NOMENCLATURA DE LOS PAISES: CODIGO ISO 3L66-ALFA 3.

ZAF:Africa del Sur MLI:Mali DZA: Argelia MAR: Marruecos AGO: Angola MRT: Mauritania BMA:Botswana NAM:Namibia BDI:Burundi NER: Niger CAF: Rep. Centroafric. RVA: Rwanda DJI:Djibouti SEN:Senegal EGY: Egipto SLE:Sierra Leone GAB: Gabon SWZ:Swazilandia HVO:Alto-Volta GHA: Ghana

GHA:Ghana HVO:Alto-Volta TGO:Togo MGD:Madagascar TUN:Túnez MWI:Malawi

IMB: Zambia LBY: Rep. Arabe Liba TZA: Rep. Unida de Tannesa. zania.

AFRICA

BOL:Bolivia CAN:Canadá
GUY:Guvana CHL:Chile JAM:Jamaica
CLL:Colombia MEX:Mexico CRI:Costa Rica
SER:Suriname CUB:Cuba TTO:TrinidadTobago
CLL:Rep.Dominicana URY:Uruguay SLV:El Salvador

ISA: Estados Unidos de Norteamérica.

AMERICA

PAR:Pakistán; CYP:Chipre PHL:Filipinas KOR:Pep.de Core QAT:Qatar HKG:Hong-Kong LKA:Sri Lanka IDN:Indonesia MYS:Malasia SPL:Repal THA:Thailandia TUR:Turquía CEN:Rep.popular de China TWN:Taiwan,Rep. de China.

ASIA

AUS: Australia NZL: Nueva Zelandia FJI: Fidji JHB: Nuevas Hébridas SLB: Islas Salomón PNG: Papouasia v Nueva Guinea

O.CE.ANIA

LTX:Luxemburgo AUT: Austria NOR: Noruega BEL:Bélgica NLD: Países Bajos BGR: Bulgaria FCL:Polonia DNK: Dinamarca PRT:Portugal ESP: España GBR: Reino Unido FIN: Finlandia FRA: Francia CHE: Suiza ETE:Suecia CSK: Checoslovaquia HUN: Hungria GRC:Grecia SUN: UnionRep. Socia-ITA: Italia ISL: Islandia

listas Sovieticas

DEU: Pep. Federal de Alemania

EUROPA